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Abstract

In this report an algorithm is proposed to find and recognize faces in
color images. The established and implemented algorithm is divided into
three main phases; color correction, face detection and face recognition.
For color correction, a method combining black and white balancing is
used. The face detection part build upon image segmentation techniques,
while the recognition part is based on a method called Local Phase
Quantization, which involves various Fourier transforms. Throughout
the report we describe the methods and the accompanying theory we use
and base our design decisions on. The report also include a discussion
and the presentation of the experimental results achieved.
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1 Introduction

1.1 Aim

The aim of this project work is to implement an algorithm in Matlab that
can detect and recognize human faces in different color images. The imple-
mentation should, from an input image of an unknown face, detect where in
the image the face is located and make a decision if it belongs to a known
person in the given database. Furthermore should the algorithm be tolerant
for small rotations, translations and scaling inside the image plane as well
as for varying tone values, lightning conditions, facial poses, background
environments and degrees of blur. Other prerequisites for the project work
were that the input image always include a front-faced portrait and that the
images could be of varying size.

1.2 Pipeline

The pipeline of a standard frontal face authentication algorithm involves
solving multiple sub problems, such as: preprocessing, face detection and
face recognition. Each of these sub problems can be solved in various ways
and below we list our solutions.

• In the preprocessing phase we use simple methods of color correc-
tion, namely black and white balancing.
• The face detection phase is built around finding regions of skin
in the YCbCr color space and the combination of those regions with
masks gathered through various segmentation steps.
• For the face recognition part we base our algorithm upon on the
Local Phase Quantization (LPQ) algorithm.

2 Theory

This section presents the underlying theory behind some of the methods
utilized.

2.1 Face detection

Here in this section are the computation of the eye map and mouth map
as well as the theory behind the alignment of the faces explained. All of
which are methods that are used when deriving the final output of the face
detection phase.
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2.1.1 Eye map

Eyes can be located by recognizing signature eye regions in images. One
way to do this is through the utilization of the YCbCr color space [1]. This
process involves the development of a so called eye map, which essentially is
a gray scale image that is brighter where the locations of the eyes could be
present. The eye map itself is derived from two independent components, the
chroma component and the luma component. After these two components
have been compiled, they are merged via an AND operation to establish the
eye map.

The interesting parts about the YCbCr color space, which allows us to
proceed this way, are that the Cb and Cr channels are observed to have high
variation around the eyes. Additionally, it is also observed that eyes most
often contain both dark and bright pixels in the Y channel. Because of these
observations, as described in [1], we can construct the chroma component
of the eye map through Equation 1 and the luma component by Equation
2, where C̃r is the inverted Cr channel and where ⊕ represents the dilation
and 	 the erosion of the Y channel by a kernel Kn. The kernel Kn can be
of various shapes, e.g. an ellipse. For this algorithm, a circular disk is used,
where the kernel width is proportional to n.

eyeMapChroma =
1
3{C

2
b + C̃r

2
+
Cb

Cr
} (1)

eyeMapLuma =
10∑

n=1

Y ⊕Kn

n+ Y 	Kn
(2)

2.1.2 Mouth map

As [1] also mentions, the mouth area contain much stronger Cr than Cb

values compared to the other parts of a face. This is due to the fact that
the mouth is more often red than blue. By studying combinations of the Cr

and Cb channels, one can therefore realize that the mouth region receives a
low response by Cr

Cb
and a high response for C2

r . As of such, it is possible to
extract an accurate mouth map through Equation 3 and 4.

mouthMap = C2
r · (C2
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. (4)
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The sums in Equation 4 are defined over all pixels in the image for each
component.

All color components in Equation 1, 2, 3 and 4 are normalized to the
range [0, 255].

2.1.3 Circular Hough transform

A compensation for the image plane rotation of a face can be achieved by
taking advantage of the symmetry of faces, namely that both eyes most often
form a vector that is parallel to the horizontal axis. After the extraction of
such a vector, one can easily find the rotation of the face.

The algorithm we use to locate the eyes is called the Circular Hough
Transform (CHT) which is a feature extraction technique for finding circles.
The algorithm is popular and often used because of its robustness in noisy
areas and tolerance for occlusion and varying illumination [2]. However, it
does not exists a specific definition of the algorithm steps based on CHT. A
brief description of a customized version is included below.

The first step is to locate pixels at regions with high gradient variations.
These pixels are called candidate pixels and they have the ability to cast
votes, in a circular pattern around themselves. An accumulator array is then
defined to store the votes. More votes on a pixel increases the likelihood of it
being a center point for a circle. The vote-pattern is illustrated by Figure 1.

Figure 1: CHT voting pattern to estimate the center of the circle.

The second step is to estimate a center point. The position votes from
the candidate pixels belonging to an image circle, tend to accumulate at
the center of the circle. Therefore, the center of the circle is estimated by
detecting the peaks in the accumulator array.
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2.2 Face recognition

This section explains the theory behind different face recognition solutions.
The methods explored where Eigenfaces and Local Phase Quantization.

2.2.1 Eigenfaces

Eigenfaces can be used as an approach for human face recognition and is the
name given to a set of eigenvectors [3]. According to the authors of [4], these
are the initialization operations to acquire the eigenfaces:

• Prepare a training set of face images.
• Calculate the eigenfaces from the training set. Only keep the M images
that correspond to the highest eigenvalues. It is these images that
defines the face space.
• Calculate the corresponding distribution in M-dimensional weight space
for each known individual and projecting their face images onto the
face space.

To calculate the eigenfaces, operations such as matrix multiplication and
sums needs to be computed. Firstly we want to subtract the average image
from each original image. Let the training set images be Γ1, Γ2, Γ3...ΓM .
Also let the average face be Ψ, then each face differs from the average by
the vector Φi = Γi −Ψ. Secondly we need to calculate the eigenvectors and
eigenvalues from the covariance matrix C. This can be done by Equation 5
below.

C =
1
M

M∑
n=1

ΦnΦT
n = AAT (5)

Where A = [Φ1...ΦM ]. It is possible to determine the eigenvectors of C
right away, but it is more efficient to compute the eigenvectors of the smaller
matrix AAT .

The eigenfaces ul are given by Equation 6 below.

ul =
M∑

k=1
vlkΦk, l = 1...M (6)

For the face recognition part, we need to project an image Γ to the face
space Ω = ÛT (Γ−Ψ) and determine which face class that image belongs to.
Here Û is the set of eigenvectors and Ω is the weight vector that represents
the new face in face space. By minimizing the Euclidean distance, which is
shown in Equation 7, we can determine which face class a certain image
belongs to.
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εk = ‖Ω−Ωk‖ (7)

In Equation 7, Ωk is a weight vector that represents the kth face class.
If the distance εk is lower than a certain threshold Θ, the image is considered
to belong to the database.

In Figure 2 below some eigenfaces are shown with our implementation.

(a) (b) (c) (d)

Figure 2: Example of some eigenfaces from our database.

2.2.2 Local phase quantization

Applying the method of local phase quantization (LPQ) to solve the problem
of face recognition was introduced in [5]. This method is proposed especially
to solve the problem of recognizing faces in blurred images, since the image
descriptions provided by LPQ are considered to be blur invariant.

The LPQ method work under the assumption that the blur in an image
can be represented as a function, called the point spread function (PSF). The
final blurred image can then be obtained by applying a convolution between
the clean image and the PSF. As seen in Equation 8, where i is the clean
image, b is the PSF and f is the blurred image.

f = i ∗ b (8)

Applying the Fourier transform to Equation 8 will result in Equation 9,
where I, B and F represent the Fourier transforms of i, b and f .

F = I ·B (9)

Taking the argument of F in order to compute the phase will result in
Equation 10, where 6 F , 6 I and 6 B are the phases of F , I and B respectively.

6 F = 6 I · 6 B (10)

From Equation 10, a blur invariant descriptor of the image can be derived
using two properties of the Fourier transform. The first property states that
the Fourier transform of a symmetric function will be a real value function [6,
p. 151]. By combining this with the knowledge from [7], that PSFs are
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generally symmetric and that the phase of a real value function is either 0 or
π, the conclusion can be reached that 6 B can only assume the value 0 or
π. Furthermore, [5] claims that regular PSFs are often close in shape to a
Gaussian function or a sinc function, which as shown in [6, p. 144-148], has
a positive Fourier transform for small enough frequencies. This realization
leads to the conclusion that 6 B = 0. Using this in Equation 10 results in
Equation 11, that indicates that 6 F is a blur invariant descriptor of the
image since it is not dependent on the PSF.

6 F = 6 I (11)

In order to compute the phase of the image, a short-time Fourier transform
(STFT) is used. The STFT computes the Fourier transform for a given
frequency interval that is chosen to be small enough for B > 0 to be valid.
Four such intervals, seen in Equation 12, are chosen and computed per pixel.

u1 = [a, 0] ,u2 = [0, a] ,u3 = [a, a] ,u4 = [a,−a] (12)

For every pixel the real and imaginary parts of each STFT computation
is stored separately and transformed into a binary representation using
Equation 13.

g =

{
1, if g ≥ 0
0, else

}
(13)

Combining the binary representations of the real and imaginary parts
of all four STFT values results in an 8-bit binary value. This value can
be transformed into a decimal number between 0 and 255. Finally the
image descriptor can be derived by computing a histogram over the decimal
numbers representing each pixel.

Once the image descriptor have been computed it can be compared with
other descriptors to see if their respective images can be considered a match.
The comparison is performed by calculating the average euclidean distance
between the values in the descriptors. If the distance is smaller than a certain
threshold, the images are considered a match.

3 Method

The constructed algorithm consists of three major phases, color correction,
face detection and face recognition. The phases are linked together in a
chain, meaning that the color corrected image given as output from the color
correction phase will serve as input to the face detection phase and that the
detected face is delivered as input to the face recognition phase. Finally the
recognition phase will determine if the given face is stored in the database.
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In this section we will go into detail describing the methods we use in
each phase.

3.1 Color correction

We have implemented a way of color correcting the images given as input.
It consists of two parts, where the first part is black balancing and the
second part is white balancing. An example of what our algorithm achieve
is pictured in Figure 3.

(a) (b)

Figure 3: Original image (a) and color corrected image (b).

3.1.1 Black balancing

This part aims to calibrate the black pixels of the image in order to make
the most black pixels true black. We got the idea to do this when we saw
that some of the faces in our dataset were not correctly estimated by our
YCbCr color space thresholding. In particular there were some blue tinted
images, such as Figure 3a, that did not register faces properly.

To solve this problem we extract a few percent (1.5) of the most black
pixels in each channel of the image. Then, we compute the mean value of
these before we subtract the computed values from each pixel of the image.
The resulting image will then contain more pure black pixels but also more
poor white pixels, which leads us on to the next part, namely white balancing.

3.1.2 White balancing

This part aims to calibrate the white pixels of the image in order to achieve
better white pixels. It is essentially the same process as black balancing,
however with one notable difference. Instead of utilizing subtraction by the
mean values we apply scale factors that raise these mean white values of the
brightest pixels to become true white. Here we take 0.1 percent of the most
white pixels of each channel into consideration when computing the scale
factors.

9



3.2 Face detection

This section will be explained through an example where the input is the
color corrected image of Figure 4a.

In short, initially the input image is padded with zeros on all sides by a
4x4 kernel in order for future morphological operations to work as intended.
Several masks are then derived and used for image segmentation in order to
narrow the search space for eyes and mouth. To be clear, we will call the
mask that marks out where the estimated face is in the image for face mask
and the result of this phase for output. The output is essentially an image
derived from a narrowed face mask in form of a rectangle that precisely
covers the eyes and mouth, see Figure 11c for an example. When the face
mask is found we can search for the eyes and mouth. The eyes and mouth
will then be used to compute the output.

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Figure 4: Masks (b-l) that are generated during the process of deriving the
final face m from input image a.
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3.2.1 Estimated skin mask

After padding the color corrected input image several masks are computed.
At first, a mask for estimated skin regions is computed through thresholding
inside the YCbCr color space. See Equation 14 for the specific values we use
and Figure 4b for the estimated skin mask of this example.

estimatedSkinMask = and(and(Cb > 95, Cb < 145),
and(Cr > 132, Cr < 165))

(14)

3.2.2 Background mask

Next follows the computation of a mask for the background (Figure 4c),
or in more particular, a mask containing large homogeneous regions of low
frequency. This as we assume that a face contain a lot of high frequency parts
while background regions, e.g. walls, often are homogeneous and mostly
consist of low frequencies. To avoid that small regions in the face are selected
for this mask, we remove all regions with areas containing less than 5 percent
of the pixels of the image.

The function takes the gray version of the input image as argument.
Furthermore, we first increase the contrast of the image by using Matlab’s
imadjust function. Then we use edge filtering on the image with the Canny
kernel. This will highlight the edges of the image. We then perform some
morphological operations that will implicitly threshold the image and deliver
a binary mask containing blobs that represent each region, see Figure 5. As
previously mentioned before continuing any computation, we remove small
blobs.

Figure 5: Segmented image for determining the background mask.

Then we derive a gray scale image representing the amount of high
frequencies in each region by performing a median filtering of the input
image followed by a filtering with the Laplacian of Gaussian kernel. The
median filter will remove unwanted noise as we are only interested in those
frequencies caused by the actual objects in our image. The LoG filter will

11



first smooth the image a bit more by the Gaussian kernel before the Laplacian
kernel is applied in order to give us the more important high frequencies
of the image. Given this computed image containing the high frequency
information we can for each region blob calculate the percentage of high
frequency. We conclude that if the high frequency part is less than 0.8
percent, it is likely that this region of the image is part of the background
and that we therefore can add this blob to the background mask.

3.2.3 Non face regions mask

Next follows the computation of a mask containing regions of the image
that we deem will not be part of the face, see Figure 4d. This through the
utilization of the YCbCr as well as the HSV color space, as seen in Equation
15. The mask is before being used also subject of some morphological
operations (opening and removal of small blobs), this in order to remove
small parts, like eyes, which sometimes are included in this mask.

nonSkinMask1 = Cb > Cr + 10
nonSkinMask2 = V < S − 0.2
nonFaceMask = or(nonSkinMask1, nonSkinMask2)

(15)

3.2.4 Face mask

Now we can combine the estimated skin mask (Figure 4b) with the background
mask (Figure 4c) as well as the mask containing non face regions (Figure 4d)
in order to derive our first estimation for the face mask (Figure 4e). Worth
noticing is that Figure 4e both contains large parts of the woman’s face as
well as parts of the pictured person’s face in the background painting. The
combining is essentially done by an AND operation;

AND(estimatedSkinMask, ¬ backgroundMask, ¬ nonFaceMask).
To improve this estimation we perform opening operations, this will

give us Figure 4f. Then to further improve the estimation all the holes in
the derived mask is filled before the largest blob is selected to be the new
estimation. This new estimation will then be the subject of an iterative
opening process that shrinks the mask as much as possible while making
sure that there still is a blob left in the mask, see the result of this process
in Figure 4g.

We now try to further improve the estimation while we in the process
also try to derive eye candidate masks. To do this we first compute a gray
image over the face, Figure 4h, by utilization of our face mask estimation. If
the gray face image has one large bright part and one large dark part, which
corresponds to the person being lit by a light from the side and that the
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mean values of these regions are sufficiently diverse, we brighten the dark
part of the face by adding 80 percent of the mean value difference to each
pixel of the dark part. This reasoning is illustrated by Figure 6 and notice
that both eyes are represented among the eye candidates in Figure 6f while
only one eye is represented among the eye candidates in 6c. Furthermore, to
compute the bright and dark part of the image we use the Y component of
the YCbCr color space.

(a) (b) (c) (d) (e) (f)

Figure 6: Process of equalizing the dark and bright part of a face being lit
from the side. (a) show the original gray face image while (b) show filtered
face mask and (c) the resulting eye candidates for the same image. (d)
display the improved gray face image while (e) display the filtered face mask
and (f) the eye candidates of this improved image.

By thresholding the gray face image by 0.47 we receive the binary image
seen in Figure 4i. This binary image is only computed to be used for deriving
the face contours, see Figure 4j. This is done by the unconventional way of
using filtering with the Laplacian kernel, however through experimentation
we have found out that this method works better for this specific case than
other edge detection algorithms. This filtered face mask is then influenced
by a number of morphological and binary operations. We first extract the
main contour of the face, this is done by filling in all the holes and XOR-ing
this mask with an eroded version of this mask. It is done in this particular
way as if the face contour instead was selected by the blob with largest area,
we could get a blob inside the face instead, e.g. a contour of someones beard.
If we on the other hand would select the blob that has the largest convex
hull the face border could sometimes be connected to the borders of the eyes
(e.g. slight side pose), eliminating one of the eyes from our mask, which is
not what we want. By selecting regions that lie inside of the face contour we
can extract different masks for eye candidates, combined they make up
Figure 7e.

Now that we have computed our eye candidates that help us narrow
the search space for the actual eyes, we can try to improve the estimated
face mask even more. However observe that this last part was not included
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in the final version of our algorithm as we found out that it only made a
marginal difference and hence only constraint our algorithm without giving
much benefit. Nevertheless it will be explained below.

The idea is established from the idea to minimize excessive hair and the
neck from some faces. For example, removing the neck will also remove
eventual necklaces that could interfere with the process of finding the eyes.
The same applies to hair, as curls often form circular patterns that could be
mistaken for an eye. Therefore we begin with dilating the contour of the face
quite a lot. This as the hair line of our face contour often consist of a zig-zag
pattern and that dilation will therefore smooth out these lines, see Figure 4k.
Now by filling in the holes and XOR-ing with the previous state we could
derive Figure 4l. Notice how the neck in this case is almost in an own blob,
this is what we wanted, but this did not happen with this particular image.
If the neck would be separated in an own blob, we would select the largest
blob to be our new estimation of the face mask. To determine the final face
mask used to derive the face image in Figure 4m we only need to perform
some iterative dilation to our estimation. Notice how this method got rid
of some of the hair and that it almost got rid of the neck in this case by
comparing with Figure 4h.

3.2.5 Eye map

In order to deliver a precise output image we first need to locate the positions
of the eyes and mouth. To extract the eyes we go by the method described
in [1] and explained in the theory section above. By Equation 1 we compute
the chromatic component of the eye map which can be seen in Figure 7a.
More over is the luminance component of the eye map computed according
to Equation 2 and displayed in Figure 7b while the resulting original eye
map is seen in Figure 7c.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Process of computing the eyes locations. (a) is the chromatic
component of the eye map, (b) the luminance component, (c) the original
eye map, (d) the mask of over saturated regions, (e) the eye candidates while
(f) is the final eye map.

To narrow the search space for the Circular Hough Transform that will try
to find bright circles in the eye map, we want to detract as much as possible
from it while leaving the eyes present. Through experimental testing we have
found that oversaturated parts of some images have an negative influence
on the outcome of the Circular Hough Transform when it is searching for
the locations of the eyes. Therefore we attempt to minify their footprint by
the construction and utilization of a mask containing those regions. In this
particular image there are no prominent oversaturated regions as is easily
understood by viewing the oversaturated mask in Figure 7d. However Figure
8 illustrates that there indeed is oversaturated parts of some images and that
the oversaturation usually avoid the eye regions which let us detract this
mask from the original eye map. The mask itself is computed in the same
fashion as the process of determining background regions, i.e. by the use of
filtering with the Laplacian kernel, thresholding and dilation.

(a) (b)

Figure 8: Original image (a) and the mask of oversaturated regions (b).
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Another mask that we construct and detract from the original eye map is
one derived from the mean colors of each channel between the pixels inside
of the face mask. The negated version of the mask detracted in this example
can be seen in Figure 9, however it does not provide much benefit in this
case. There are though cases when this procedure will remove curls of hair
hanging down on the forehead which is why we came to think about this
solution. The solution is based on the assumption that we should be able
to derive a better mask for the skin of the face after we have derived the
face mask and that the eyes should lie inside of the filled version of that skin
mask.

Figure 9: Mask containing the pixels of the original image that lie close to
the mean color of the face mask. Here is pixels with a maximum difference
of 20 percent from the mean value of each channel allowed. This as we have
found that individual comparisons of the values of each channel works better
than comparing the actual colors (RGB vectors).

Finally we also detract a tentative mouth mask and everything outside
of the face mask while AND-ing that resulting mask with a dilated version
of the mask containing the eye candidates seen in Figure 7e. This execution
gives us the final eye map (depicted in Figure 7f ) that we will hand over to
the Circular Hough Transform that will try to find the true locations of the
eyes.

3.2.6 Eyes extraction

We use the Circular Hough Transform implicitly by using Matlab’s function
imfindcircles when we determine the locations of the eyes in the final eye
map. We have set a very high threshold to be used by the function making it
deliver many possible bright circles that could be our eyes. As the returning
output comes out in a sorted list with the best circle estimation at index
zero, we assume that this circle is one of the eyes. Then we look at the next
index to see if that circle is the other eye. If we find that the location of
this circle is not further away than the combined radius of the first eye and
this circle’s times four, we deem this eye candidate being too close to the
first eye in order to be accepted as being the second eye. Therefore we will
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repeatedly move on to next circle until we find one that can be verified as
being the second eye.

3.2.7 Mouth map

The mouth map seen in Figure 10a is computed by Equation 3 after the
face has been aligned by compensating for the rotations in the image plane.
By thresholding the mouth map with half of the maximum value inside of
the rectangular mask seen in Figure 10b, we find blobs of mouth candidates.
Figure 10b is derived from the eyes by measuring the distance between them
while using this distance when estimating where the mouth should be located.
Then by selecting the largest blob among the mouth candidates we determine
the mouth mask seen in Figure 10c and by computing its centroid we also
determine its location.

(a) (b) (c)

Figure 10: Process of computing the location of the mouth. (a) show the
mouth map, (b) a mask for the region where the mouth should be located
while (c) show the final mouth mask.

3.2.8 Output

When the final eye map, Figure 7f, has been computed we compensate for
any rotations less than 90◦ inside of the image plane in order to align the
face. We find the rotation of the face by determining the angle of the vector
ranging from the left eye to the right eye. Figure 11a show the face image
and the locations of the eyes before the compensating rotation has taken
place while Figure 11b show the compensated image. Finally by measuring
the horizontal distance between the eyes and the vertical distance between
the eyes and mouth, we can derive the output of the face detection phase
seen in Figure 11c.
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(a) (b) (c)

Figure 11: Aligning the eyes to the horizontal axis. (a) show the face image
before correction of the rotation in the image plane is performed, (b) show
the rotated version and (c) the final output.

3.3 Face recognition

The problem of face recognition was solved using the LPQ method described
in the Theory section.

The short-time Fourier transform was performed by using a two step con-
volution, as described in [5], between the image and two kernels, Equation 16
as well as its complex conjugate where h is the kernel size.

K(x) = e
−2πix
h (16)

The convolutions where performed four consecutive times to derive the
STFT for the different frequency intervals specified by the kernel size. The
imaginary and real parts of the STFT computations where transformed into
a binary representation by encoding negative values to zero and positive
values to one. By converting the binary values to decimal numbers and
creating a histogram containing the amount of occurrences there where of
each number an image descriptor could be derived.

The LPQ method was applied in two different steps when performing face
recognition. The first step applied LPQ to all images in the database and
stored the resulting descriptors in a file. This way no repeated computations
had to be performed on the images in the database when performing recogni-
tion. The second step is the verification step where an image is attempted to
be matched against one of the descriptors previously computed. First LPQ
is applied to the image so that a descriptor is obtained. This descriptor is
then compared to all descriptors from the images in the database and the
differences between them is computed using the Euclidean distance. The
descriptor with the smallest difference is chosen as the best match unless the
difference is larger than a set threshold in which case the conclusion can be
drawn that there is no matching image in the database.
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4 Result

In this section we present how our algorithm performs concretely through
benchmark tables as well as subjectively through images.

4.1 Face detection

The face detection part of our algorithm performs flawlessly on the original
images in the given dataset which can be seen in Figure 12 as most outputs
from the images in the given dataset is included in it. That it performs well
on these original images is not a coincidence as the algorithm was developed
and verified through testing on the given datasets. In Figure 15 we showcase
how tolerant our algorithm can be for various conditions in certain images.

Figure 12: Successful experimental results of face detection.

However when our algorithm is faced with tougher conditions, for example
blurry or very small images it somewhat breaks down. Examples of failed
face detection can be seen in Figure 13 and 14. This is presumably due to
hard coded thresholds and kernel widths for the morphological operations as
well as for the methods themselves, especially the part were we derive the
eye candidates. Detailed results where we have made the images harder to
analyze through adding artificial artifacts can be looked up in Table 1.
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(a) (b) (c) (d)

Figure 13: A case where the proposed algorithm fails to detect the correct
face due to an invalid extraction of the eyes from the eye map. (a) show the
input image, (b) the correctly extracted face mask, (c) the proper eye map
while (d) show the output image where the extraction of the eyes using the
Circular Hough Transform fail by mixing up the left nostril with the right
eye.

(a) (b) (c) (d)

Figure 14: A case where the proposed algorithm fails to detect the correct
face due to a lack of eye candidates for both eyes. (a) show the input image,
(b) the filtered face mask that gives the insufficient eye candidates in (c) and
lead to the invalid output (d).
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(j)

(k)

(l)

(m) (n) (o) (p)

Figure 15: Results of the face detection phase depicting the algorithm’s
tolerance for varying environments (a-d), lightning conditions (e-h, m-p),
poses (i-j) and amount of skin color in the image (c-d, k-l).
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Table 1: The resulting hit ratios over all images for different test scenarios.

Parameters Access (db1) No access (db0) Hard (db2) Test images
Blur, σ = 0.5 94% 75% 95% 50%
Blur, σ = 1.0 88% 50% 84% 50%
Blur, σ = 2.5 19% 25% 84% 33%
Tone, I = 0.5 94% 100% 95% 94%
Tone, I = 0.7 94% 100% 95% 89%
Tone, I = 1.3 75% 75% 87% 61%
Scale, s = 0.9 100% 50% 95% 94%
Scale, s = 1.1 100% 100% 97% 94%
Scale, s = 2 100% 50% 97% 50%
Rotation, θ = 5◦ 94% 75% 97% 78%
Rotation, θ = 10◦ 94% 75% 95% 78%
Rotation, θ = 20◦ 88% 50% 95% 72%

A large test batch were performed to test different types of image problems
and conditions. The tested conditions include varying illumination, scale,
rotation and blur. All cases were individually reviewed in order to determine
a hit, meaning that the face is extracted correctly. Furthermore the blur tests
were done by using a Gaussian low pass filter while varying the standard
deviation parameter σ. The tone level tests were done by decreasing or
increasing the intensity value at each pixel with a global percentage parameter
I. For example I = 0.5 corresponds to decreasing the intensity of the image
with 50%. Moreover all images were rotated with an angle θ and scaled with
a percentage parameter s.

Table 1 presents the hit ratio for the face detection with different types
of test images and databases. The images in the database Access are persons
with access permissions and with different types of background environments.
No access images picture persons that should not be granted access. The
original images have homogeneous intensities and backgrounds. The database
Hard has images with highly varying backgrounds and illumination conditions.
Finally, Test images is a collection of randomly selected images with various
conditions.

4.2 Face recognition

In this section the results obtained by the face recognition algorithm is
presented. The effects of performing face detection have been ignored in
these results.

Table 2 show the results of applying the face recognition algorithm to
the test data set.
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Table 2: Results of performing face recognition on the test data set.
Number of images False positives False negatives Recognition Rate
78 0 10 86%

Since the LPQ method used for face recognition is supposedly blur
invariant, the effects of applying different types of blur to the input images
were examined to verify this claim. Figure 16 shows how the recognition rate
is effected by applying Gaussian blur to the input images while Figure 17
shows the effect caused by a linear motion blur filter.

Figure 16: Shows how applying Gaussian blur effects the recognition rate.

Figure 17: Shows how applying linear motion blur effects the recognition
rate.

Figure 18 shows the result of decreasing the tone value and Figure 19
shows the result of increasing the tone value.
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Figure 18: Shows how reducing the tone value effects the recognition rate.

Figure 19: Shows how increasing the tone value effects the recognition rate.

4.3 Overview

Table 3 shows the result of running the entire pipeline including both face
detection and face recognition.

Table 3: Results of performing both face detection and face recognition on
the test data set.
Number of images False positives False negatives Failed detections Recognition Rate
78 0 10 4 82%
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5 Discussion

We wanted to keep the preprocessing part of our algorithm simple as we found
the other stages of the human face authentication pipeline more interesting.
In hindsight though we recognize that this phase becomes the foundation
determining the amount of work as well as the performance of the other
phases. Therefore we should perhaps have put more effort into implementing
an algorithm that works better for various lightning conditions and that also
normalizes the colors better. An improved version could for example have
led to that the proposed algorithm would have been able to correctly detect
the face seen in Figure 20.

(a) (b) (c)

(d)

Figure 20: A case where the proposed algorithm fails to detect the correct
face due to a too sparse estimated skin mask. (a) show the input face, (b)
the estimated skin mask, (c) the resulting invalid face mask and (d) the
output.

For face detection we decided to go by the article in [1] that is based on
the extraction of eyes and mouth through the use of the relations between
colors in faces. However we also looked into algorithms that require training
and uses features, like the Viola Jones [8] algorithm.

The aim of the segmentation steps taken during the face detection phase
were to reduce the search space for the Circular Hough Transform when
looking for the eyes. We do though recognize that this process might be
overly complicated as the single purpose for it is to make it easier to locate
the eyes. Although we tried to extract the eyes directly from the original eye
map (Figure 7c) in various ways, for example by thresholding while taking
the mean value and the variance into consideration, we did not found one
that was satisfying. We do however believe that a better preprocessing stage
could have mitigated this problem.

Another method we looked into were to utilize the ability of Eigenfaces
and its face space in order to recognize whether a blob found, in for example
the mask of Figure 4f, were an actual face or not. However we left the
implementation this method for a future study.

Furthermore do we believe that dynamic thresholds and kernel widths
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would have made our implementation more robust. Especially in regard to
faces and images of few pixels, like those in the given database db0. In order
to make our implementation less sensitive and more tolerant we have for
example been working with circular disks as kernel elements for dilation and
erosion and thresholds with large margins. More over do we believe that
the face detection part of the algorithm could be improved by utilizing the
facial expression methods explored in [9]. This as we have found out through
experimentation that the mouth plays a large role during the recognition
phase. For example when we run tests only including the eyes and nose we
received a larger recognition rate.

The chosen approach for performing face recognition became the LPQ
method but before settling on that another method was examined. This
other method was the popular Eigenfaces from [4] that was also described
in the theory section. Eigenfaces proved easy to implement and initial
tests where somewhat promising. However multiple sources including [10]
claims that Eigenfaces performs poorly under certain conditions such as
tone variations. Due to this other alternatives where examined and the
LPQ method appeared as a promising candidate with promises of simplicity
and blur invariance. While the theory behind LPQ is comprehensive it is
certainly no more difficult than Eigenfaces and following the advice of the
original authors the implementation could be made very efficient.

In order to verify the claim that LPQ is blur invariant tests where
conducted where varying degrees of different types of blur was applied to
the input image as seen in Figure 21. The results of these tests, as presented
in the results section, shows that the algorithm performs well for all but
the most extreme cases. While the blurring certainly effects the results in
a negative manner this is to be expected since the claim that LPQ is blur
invariant is merely a theoretical one. The blur invariance comes from the
assumption that the phase of the Fourier transform of the blur function is
zero which in practical applications will never be true. A more correct term
would be to call the method blur resistant.

26



(a) (b) (c)

Figure 21: A comparison of different types of blur applied to the same image.
(a) shows the original image. (b) shows the effect of applying Gaussian blur
to (a) using a standard deviation of 3.0. (c) shows the result of a 60 pixels
wide linear motion blur filter applied to (a).

To compare LPQ to Eigenfaces another set of tests where performed
where the tone value of the input images varied. This was claimed to be
an issue for Eigenfaces, but the tests performed showed that LPQ could
handle it without reducing performance significantly. Some of the tests even
suggested that decreasing the tone value could improve recognition rates
by a few percent. This may be caused by some oversaturated images that
are matched to the correct descriptor but whose distance value is above to
allowed threshold. By reducing the tone value the distance between the
descriptors are also effected so that these image now pass as they should.

An area of improvement for the face recognition algorithm is how the
threshold that determines whether or not an image should be considered a
math is chosen. Currently this value is chosen by conducting a number of
tests with images that have no match and choosing a threshold so that no
match is found for any of these images. If the Eigenfaces method had been
chosen over LPQ a more accurate way of determining this would have been
possible. Eigenfaces revolves around finding a subspace for all descriptors of
the images in the database and therefore the boundary of this subspace can
be used as a threshold. This is unfortunately not possible for LPQ.

6 Conclusion

To summarize, we deem that the proposed algorithm and implementation of
the human face authentication pipeline achieved works fairly well for a large
plethora of images.
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