
Shattering in Maya

Marcus Lilja
Pelle Serander
Lasse Bergman

April 9, 2018

Abstract

The aim of this project was to create a shattering
plug-in for Maya using Python. This report describes
how to shatter 3D objects using a Voronoi method
and the results obtained, followed by a discussion and
future work section.

1 Background

Breaking materials into pieces is a very common pro-
cess in the visual effects industry. It has a wide range
of applications whether it is in explosions, falling de-
bris, cracking materials, collapsing structures, creat-
ing dents in materials on impact and more. Although
it is possible for users to manually define patterns for
cracks along a mesh it is desirable to automatize the
process for a less user intensive and more realistic
result.

Shattering can either be physically based or non-
physically based. Physically based methods are gen-
erally more advanced since they simulate reality and
therefore rely on complex equations describing mate-
rial property and similar. However in the VFX in-
dustry effects a simulation only need to look good
enough and not be entirely accurate. Non-physically
based methods can either be procedural or image
based. Since a physically based method would be
too advanced to implement due to time constraints
a Voronoi-based procedural method was chosen in-
stead.

2 Method

The chosen method is based on generating cutting
points for the mesh. Each pair of cutting points is
associated with a cutting plane which is defined using
a center point and a rotation angle acquired from the
randomized points. The cutting plane cuts a copy of
the mesh into a user defined number of pieces and
stores these into a shard group.

2.1 Collision Check

The implemented script checks for collision between
rigid bodies each frame. When at least two rigid bod-
ies collide the shattering process is run. The shatter-
ing is only performed on active rigid bodies and does
not affect static rigid bodies.

2.2 Enforce Cut Points Inside Mesh

It is important that the points for the cutting plane
are located inside of the mesh. If the whole cutting
plane is located outside of the mesh no new shard will
be created resulting in a runtime error. The cutting
points in this project are generated within the bound-
ing box of the mesh. Generating cutting points for
more advanced geometry inside its bounding box can
be a problem since the points can be outside of the ge-
ometry. A check is required to determine if a point is
within the mesh. A ray-cast based method was used
to perform this check described in algorithm 1. Even
if all points are located within the mesh there is a risk
that a plane can cut away a shard that exist of two
separate shells. If this happens a runtime error will

1



be the thrown since a mesh cannot be constructed by
the two separate shells.

for all points p do
shoot ray from p in arbitrary direction.
count number of ray intersections n with
mesh.
if n mod 2 6= 0 then

return TRUE
end
else

return FALSE
end

end
Algorithm 1: Point inside mesh check

An even amount of intersections means that the
ray goes in and out of the geometry the same num-
ber of times. Thus the point must be outside of the
geometry. An uneven amount of intersections vali-
dates that the point is inside.

2.3 Voronoi Shattering

The Voronoi approach that was used is quite sim-
ple to implement and understand. It follows the De-
launey triangulation which is often used for triangu-
lating a Voronoi diagram according to Scharmen [1].
The general procedure is described in item algorithm
2.

By adding rigid body components to the shards
they get affected by Maya’s physics simulations.
When adding a rigid body its initial velocity is set to
zero. If a cannonball comes crashing onto a surface
the pieces should inherit a fraction of the cannonballs
physical properties. In this implementation the pre-
vious velocity of the original object is applied to the
shards initial velocity using a damping factor. After
applying the rigid bodies the simulation is run.

3 Results

In figure 1 a few frames of a simulation can be seen.
In this scene the script was attached to two objects
where one of them had an initial velocity.

for n number of meshes do
generate random cutting points p points
inside the bounding box

for all cutting points pi do
regenerate if outside of mesh

end
for all cutting points pi do

duplicate original object
for all cutting points pj do

calculate cut plane center at
pcenter = (pj + pi)/2.

calculate angle between pj − pi and
vector(0,0,1) using python
angleBetween to get a perpendicular
vector

create cut plane using center and
rotation angle

perform cut.
remove shard geometry from
temporary mesh.

end
add the shard into a shard group.

end
add a rigid body to each shard.
add velocity from original mesh to all shards.

end
Algorithm 2: Voronoi Shattering

4 Discussion

The goals of the project were achieved. A Python-
based plug-in was created with a graphical user in-
terface. The user can select any number of objects
in the scene which have the rigid body components
attached to them. The amounts of shards can be
chosen by the user.

The damping factor controls how much of the orig-
inal objects velocity that should be inherited and ap-
plied to the shards on collision.

The Voronoi algorithm together with the function
that checks if a cut point is within the mesh can shat-
ter many basic manifold meshes as long as two shells
are not created. Furthermore the material from the
original object will be passed on to the shards after
the shattering. However if a texture is used as the

2



Figure 1: A cone hitting a sphere at rest, the shards
from the cone inherits 50% of the original velocity
from the parent object

material it will be stretched out on the shards, but it
still works and looks decent.

The shattering plug-in implemented works as the
project group intended it to and yields a promising
result. However it is not completely realistic in some
aspects and can still be improved to look better. Nev-
ertheless the group is satisfied with the results and
the experiences learned from working with both Maya

and Python.

4.1 Technical Challenges

The main challenge that was encountered is how
Maya create and handles scene objects. This is
mostly due to the group’s inexperience with working
in the Maya environment. However there are some in-
teresting traits that are not used in other developing
tools that you would not expect from a professional
developing tool. Other challenges have been working
with Python and the Maya API and the limitations
this comes with.

One specific problem was that when the object
shattered into shards, the shards inherited the rigid
body from the original object. However the inher-
ited rigid bodies on the shards were unaffected by
the gravity field. Therefore the rigid bodies inherited
to the shards had to be deleted and then recreated
and connected to the gravity field for it to work as
intended.

Another Maya-specific problem was that the sim-
ulation was performed each time the timeline was
scrolled through.

5 Future Work

There are several things that this plug-in could be
extended to do. As of this time it only works for
manifold meshes and not 2d surfaces. As mentioned
previously there is also a risk of a runtime error if the
mesh is constructed in a way that allows more than
one shell if it is cut. Moreover it would be preferred
to implement an impact force. This would prevent
the mesh from shattering at impact if, for example,
the fall height wasn’t high enough to create the nec-
essary force. Adding this property would also give
the user control since they could alter the material
solidity. There are also several other traits that are
not inherited from the parent object, e.g. the angu-
lar velocity. This makes the implementation look a
bit unrealistic since the new shards will travel in a
straight path after a rotating object has shattered.

The pivot points of the shards are not in the center
of the geometry but in the center of its bounding box.

3



This makes the shards rotate unnaturally. This was
done automatically by Maya and could be fixed in
the future.

Another thing that the group wanted to implement
was to make the object shatter more at the collision
area. This would yield a much more realistic result,
since it would shatter more at the impact of the col-
lision. The group talked about doing a UV-map or a
non-uniform point distribution to solve this, but due
to the time constraint this is yet to be implemented.

References

[1] Fred Scharmen. How to: Draw the Voronoi
Diagram. 765.blogspot.se/2009/09/how-to-draw-
voronoi-diagram.html, 2009.

4


