
Mosaic Image

TNM097 - Image Reproduction and Image Quality

Lars Bergman∗

June, 2017

Abstract

This report includes a brief summary of the photographic mosaic technique and how it was applied to
reproduce a input image with the help of a image database. The application consists of creating the image
database, using euclidean distance for matching, furthermore a error diffusion was implemented.

1. Introduction

This paper will cover how the image mosaic
was implemented using matlab, the result and
a discussion. The strengths and weaknesses
of the implemented method will be discussed.
The goal with this project was to make an ap-
plication that could reproduce a good image.
The "good" here is dependent on the run time
and how close it can resemble the input image.

The program takes a input image and then
recreates the image with images from the given
database. The image seen in Figure 1 below
was the one mostly used, however any image
could be used.

2. Implementation

The implementation consists of mainly two
scripts. The first script is to create the database
and the second one is to create the mosaic
image. In section 2.1 and section 2.2 a brief
explanation of the two scripts are given.

∗Student in Media Technology at Linköpings Univer-
sity, Sweden, Campus Norrköping,
email: larbe444@student.liu.se

Figure 1: The input image used the most during
development, size of 640x640.

2.1. The Database

The database ended up with 21 images which
were all scaled and cropped to a certain patch
size. This patch size was tested and will be de-
scribed further down in the discussion section
of this report. The patches of each correspond-
ing images were stored in a array as RGB as
well as the mean value of the XYZ in another
array.

2.2. Creating the Mosaic

Creating the mosaic image was done by loop-
ing through each row and column in the scaled

1



Mosaic Image • June 2017

input image to get each pixel value. Every pixel
value in the input image was then compared
to all images in the database. The matching
was then made by taking the image with the
closest euclidean distance to replace that pixel.
This comparison was made in the CIELAB
color space for both the pixel and the database
patches.

To further enhance the visual resemblance
of the mosaic image, error diffusion was im-
plemented. Error diffusion takes the difference
between the mean XYZ value for the pixel and
the patch and then spreads that error to ad-
jacent pixels that has not yet been processed.
By doing this for each channel of the pixel
a greater result will be produced. This was
accomplished with the "normal" weights dis-
covered by Floyd and Steinberg.

3. Result

The result of the image mosaic implementa-
tion can be seen in the figures below. Figure 2
shows the implementation without error dif-
fusion with a downscale to 0.2 of the original
size.

Figure 2: Downscale to 1/5 of the original image,
without error diffusion applied.

To see the difference between the downscal-
ing Figure 3 shows the same image but only
downscaled to half of the input image. This
results to a larger image and longer run time
but it recreates the image better.

Figure 4 shows the implementation with er-
ror diffusion applied and a downscale to 0.2 of

Figure 3: Downscale to 1/2 of the original image,
without error diffusion applied.

the original.

Figure 4: Downscale to 1/5 of the original image,
error diffusion applied.

Figure 5 shows the implementation with er-
ror diffusion applied and a downscale to 0.5 of
the original.

Figure 5: Downscale to 1/2 of the original image,
with error diffusion applied.

2



Mosaic Image • June 2017

In Figure 6 a zoom into the output mosaic
image can be seen, here it is easy to see the
small database images that makes up the im-
age.

Figure 6: A zoom in to the image to see that the
image is actually made of smaller patches from the
database.

4. Discussion

The mosaic images created by the application
resembles the input image fairly good most of
the time. However if the input image is really
bright and the database lacks bright images it
will probably not look a lot alike. Nevertheless
this is a problem that can easily be avoided
by choosing a good variety of images for the
database and having more images in it. That
being said the more images in the database
will require more comparisons resulting in a
longer run time.

An improvement could be to try an optimize
the database such that it will rate each image
in the database based on the number of times
it is chosen.

Another thing that increases the run time
drastically is the chosen patch size and the
down sampling of the input image. Down sam-
pling the image to about 1/5 of the original
size for a 640x640 image and having the patch
size set to 15x15 was considered to be appro-
priate. This was good due to the fact that the
run time was about one minute and the result
was promising.

The error diffusion that was implemented

really improved the visuals of the output im-
age since it got rid of the homogeneous areas
which can be seen by comparing Figure 3 with
Figure 5.

Overall the result is promising considering
both the run time of the application and how
close it can resemble the input image. For fur-
ther work the database could be improved as
well as some other techniques such as lighting
compensation.

3


	Introduction
	Implementation
	The Database
	Creating the Mosaic

	Result
	Discussion

