
AgarAI

TNM095 - Artificial Intelligence for Interactive Media

Kristin Bäck∗

Lars Bergman†

November, 2016

Abstract

This report includes a brief summary of the reinforcement learning technique called Q-learning and how it
was applied to a simplified version of the game Agar.io. The result is a game where a player meet an agent
who gets smarter as the time goes on. The implementation is not perfect, why it is hard to, by testing, see
how fast the player learns. To see a video of the result click here: AgarAI - result.

1. Introduction

This paper discusses the theory behind the
method and the implementation of the Q-
learning algorithm for a simplified version of
the game Agar.io. The strengths and weak-
nesses of the agent will be discussed. The goal
with this project was to implement the agent
with the Q-learning algorithm and see how
quickly it learns to play the game.

2. AgarIO

2.1. The Game

Agar.io is a popular massively multiplayer on-
line action game where the players controls a
cell/sphere and the goal is to get as large as
possible [2]. The player grows by eating food
or by eating smaller players than itself. Once
the player itself is eaten, it respawns with the
starting size. The camera is zoomed in on the

∗Student in Media Technology at Linköpings Univer-
sity, Sweden, Campus Norrköping,
email: kriba265@student.liu.se
†Student in Media Technology at Linköpings Univer-

sity, Sweden, Campus Norrköping,
email: larbe444@student.liu.se

player so it cannot see the whole game area.
Agar.io also contains some additional features
such as ”splitting up” and ”viruses”. These
features are not implemented nor discussed
in this report. The start page of the game is
shown in Figure 1.

Figure 1: Agar.io gameplay; this shows only a small
fraction of an Agar.io map. There are four
cells on this screenshot. Each cell with a name
is controlled by a player.

2.2. Game idea

The game goal is for the player to get bigger
than its enemies. In this version Q-learning is
applied on a agent playing the game against
one player. Both the bot and the player are
sphere objects that can move in any direction

1

https://www.youtube.com/watch?v=dB1ZkUzmB1g


AgarAI • November 2016

in the scene. When either the agent or the
player comes close to an object smaller than
itself it gets eaten. If they are close to an object
larger than itself they instead will be eaten. The
game terminates/restarts when either the bot
eats the player or the opposite.

3. Q-learning

The Q-learning method is a model free
reinforcement learning technique based on
an action-value-function containing rewards,
learning-rate and discount factor [1]. The
method gives a rule that given a certain state;
choose the most optimal action from that state
based on previously made choices.

The Q-learning method consists of a set of
states and a set of actions to each state. By
performing an action the bot moves between
two states. For each action taken the bot get a
reward of varying size.

The formula in Equation 1 describes the Q-
learning method. QV(t+1)(st , at) is the result
of the formula ie. The new Q-value given the
old state st and old action at. α is the learning
rate, it can be set to a value between zero and
one. By setting it to zero the Q-value will never
be updated. Setting it to a value close to one
means that the Q-value will be updated more
often and the agent will learn quicker. R(st , at)
is the reward value given the old state st and
old action at. R is a matrix and are called the
reward-matrix further on in this report. Vt(st+1)
is the learning value given the new state st+1.
QVt(st , at) is the old Q-value given the old
state st and old action a.

QV(t + 1)(st, at) = (1 − α)QVt(st, at)+

α(R(st, at) + Vt(st + 1)QVt(st, at))
(1)

4. Method

The game is created in Unity, a cross-platform
game engine. Unity simplified the modelling
of game objects and setting up the scene.

4.1. Game setup

The game world is a 2D plane with the same
size as the device screen used when playing
the game. Food appears in the world as small
circles with different colors and are randomly
placed in the world continuously during run
time. The players are circles that starts with a
greater radius than the food, as can be seen in
Figure 2. The size of the players increase when
”eating” food or other players. The food is
eaten when the player is placed over the food.
Every edge in the world is equipped with a
static boundary in order to keep the players
inside of the field of view.

Figure 2: A snapshot of AgarAI. The bigger red cell is
the agent and the black cell is the player. The
smalller cells are the food that spawns through-
out the game session.

4.2. Implementation of Q-learning

In order to implement the Q-learning algo-
rithm every state and action had to be set.
Below follows the states and actions that were
implemented for AgarAI.

Actions

A1: Go to small player

A2: Go to large player

A3: Go to closest food

A4: Flee from player

States

S1: Close to food

S2: Far from food

2



AgarAI • November 2016

S3: Close to large player

S4: Close to small player

S5: Far from large player

S6: Far from small player

S7: Close to large player and food

S8: Close to small player and food

S9: Close to corners

S10: Special rewards see section 4.3

The states and actions constitutes the reward
matrix R which can be seen in Figure 3, where
the actions are the columns and the states are
the rows of R. The values of each slot is pro-
duced by guesses and trials of the Q-learning
method in order to accomplish the wished be-
haviour of the agent. The values in the reward
matrix never change but are instead used to
produce the Q-matrix.

Figure 3: The R-matrix with rewards for states and ac-
tions. Note that S10 are the special rewards
discussed in section 4.3.

Once the R-matrix was created, it was time
to initialize the Q-matrix to zero. In order to
during runtime update the matrix with result
values based on the Q-learning equation. The
current state of the agent needs to be consid-
ered and is set to the variable s. Based on
this state s, amongst the possible action, one
is chosen. The reward for taking the action is
r and the resulting new state is set to s. The
values of s, r and s are used in the Q-learning

equation, 1, in order to update the Q-matrix
values. After this the variable s is set to the
new state and therefore becomes the current
state. The process is repeated until a terminate
state is reached. The agent will take the best
possible action according to the Q-matrix for
the current state.

4.3. Special rewards

Some special rewards/punishments were given
to the agent. If the agent for example man-
aged to eat the player given the current state
and action performed, it would be rewarded
with a bonus of X points. Also the agent was
given negative X points if it was eaten for the
current Q(s,a). This way the agent will con-
verge to its final values faster and often tend to
choose/avoid the action faster.

5. Result

The result is a game in which a bot plays
against another player. The agent successively
becomes smarter and learns to adapt to
the game and the player by applying the
Q-learning method. Therefore the agent will
act and learn different depending on the
playstyle of the player and what has been
working and failing during that game session.
This made it hard to determine how fast the
agent learns to get the ”optimal” performance.
However around five minutes into the game
session the values tend to converge in the
Q-matrix. This was discovered by a simple
test where the player stood still while being
larger than the agent from start. The simple
test can be seen in Figure 4. Nevertheless that
was also shown when actually playing against
the agent in the Q-matrix after a few minutes.

One improvement to the agent would be to
look over the action-functions that were imple-
mented. They were implemented in an early
stage of the project and are far from optimal.
This was due to the fact that the main focus
were on implementing the Q-learning algo-
rithm. An example is the flee function that

3



AgarAI • November 2016

only takes the vector of the players movement
direction and move the same way. This makes
it so the agent can easily be tricked into a bad
position such as a corner.

Figure 4: The simple learning test, the player is the black
cell and stands still. The agent is the red cell
who starts smaller than the player and needs
to eat food and then eat the player.

6. Discussion

Solving the goal for this game could have
been done differently. The Q-learning method
worked but an additionally AI-method would
improve the speed and accuracy of the bots
learning.

Producing the reward matrix came with
some troubles as already mentioned in 4.3.
The values in the reward matrix were result of
several trials. Time showed that the rewards
needed to be of great difference for the bot to
produce any learning.

The game is dynamic which makes every
state and action more complex. The bot can
move in any direction. Another ambiguity in
the game is the player.

One goal for this project was to try and
make the agent unbeatable. However since the
player can change the learning of the agent
and the interaction between the player and
agent this is not the case as of now. Every
move the player does affect the bots handling.
This means the player can raise the bot in
different ways.

If there would be two of the same agent

playing against each other it is hard to say what
would happen. Probably one of the agents
would learn quicker than the other, based on
the first random action that is given to the
agents at the start of the game. However if
one agent would be eaten by the other agent
many times in a row, it would learn to dodge
the other agent and try to eat food instead. So
two identical agents playing against each other,
would possibly end up in one agent who is
very aggressive and eats food and one agent
that is passive and eats food. The Q-matrix
values of the two agents would not be the same.

To be able to say if the bot is actually learning
fully, the game would have to be running for
a long time. It is hard to predict the outcome
of for example one week running, but the Q-
matrix would probably be fully converged.

7. Conclusion

There are some things that can be further de-
veloped in order to get a more accurate result.
Improvements to be made mostly relate to effi-
ciency and the functions for the agent. Some
functions in the code could definitely be op-
timized, for example the ”Flee” function. It
would also be interesting to try and imple-
ment a Neural network or B-trees upon the
Q-learning algorithm.

There is no function for testing implemented
in this project. In order to accurately say how
fast the bot learns by the Q-learning algorithm
testing should get more focus. Also it would
be interesting to implement more agents in the
same game to see how the Q-matrixes for the
agents develops.

References

[1] Richard S. Sutton and Andrew
G. Barto. MIT Press, 1998 Rein-
forcement learning: An Introduction
https://webdocs.cs.ualberta.ca/
~sutton/book/ebook/the-book.html
(Retrieved 2017-02-09)

4

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html


AgarAI • November 2016

[2] Fingas, Jon. Reinforcement learning: An
Introduction https://www.engadget.com/
2015/06/01/agar-io/ (Retrieved 2017-
02-09)

5

https://www.engadget.com/2015/06/01/agar-io/
https://www.engadget.com/2015/06/01/agar-io/

	Introduction
	AgarIO
	The Game
	Game idea

	Q-learning
	Method
	Game setup
	Implementation of Q-learning
	Special rewards

	Result
	Discussion
	Conclusion

